

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

	CANDIDATE NAME			
	CENTRE NUMBER		CANDIDATE NUMBER	
* 6 3	CHEMISTRY			0620/02
3 5	Paper 2			May/June 2008
				1 hour 15 minutes
1 3	Candidates ans	wer on the Question Paper.		
3 4	No Additional M	laterials are required.		

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

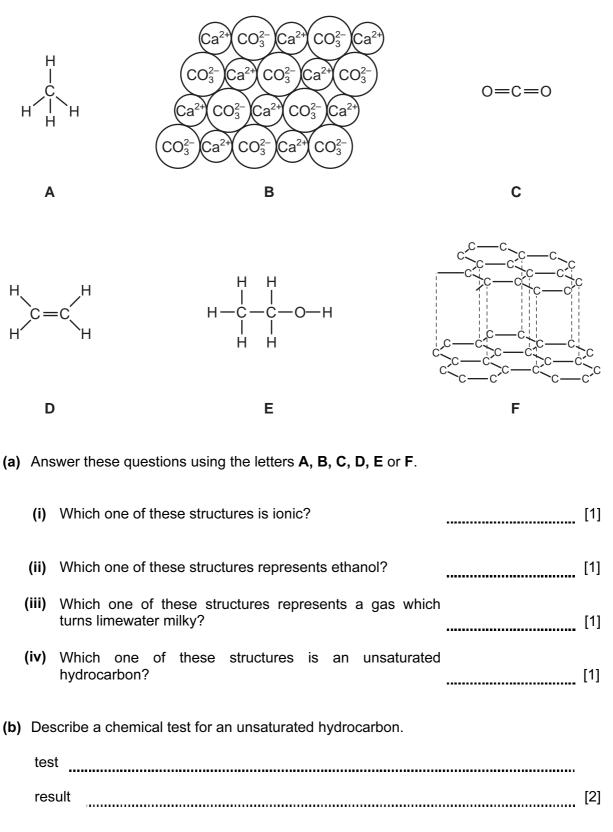
Write your Centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen.

You may need to use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES

Answer all questions.

A copy of the periodic table is printed on page 16.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.


For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
Total		

This document consists of 16 printed pages.

For Examiner's Use

1 The diagram shows the structures of some substances containing carbon.

(c)	State the chemical name of structure B .		For Examiner's
		[1]	Use
(d)	Structure F has several uses. Which one of the following is a correct use of structure Tick one box.	F ?	
	for cutting metals		
	as a lubricant		
	for filling balloons		
	as an insulator	[1]	
(e)	The structures A to E are compounds. What do you understand by the term <i>compour</i>	nd?	
		[1]	
(f)	State the type of bonding in structure A .		
		[1]	
	[Total: ·	10]	

© UCLES 2008

[Turn over

For Examiner's Use

2 The diagram shows a statue in a park in an industrial town. The statue is made from limestone.

	iron pins inside statue	the same statue after 20 years	
		,	
(a)	State the name of the chemical present in limestone.		
			[1]
(b)	Use ideas about the chemistry of atmospheric pollutant statue changes over 20 years.	s to suggest how and why the	è
			[4]
(c)	Parts of the statue are joined together with iron pins. At statue. Suggest why the arm falls off.	ter 30 years, the arm falls off	the
			[1]

(d) Iron has several isotopes.						For Examiner's
	(i) What do you understand by the term <i>isotopes</i> ?					Use
	(ii)	The table shows the	ne number of subatomic	c particles in an atom of iron.		
]	
		type of particle	number of particles	relative charge on the particle		
		electron	26			
		neutron	30			
		proton	26			
		Complete the table	e to show the relative ch	narge on each particle.	[3]	
((iii)	State the number	of nucleons in this isoto	pe of iron.		
					[1]	
(a)	San	a jaatanaa ara rad	issotive. State and indu	ustrial use of radioastive isstance		
(e)	500	le isolopes are rad	loactive. State one indu	istrial use of radioactive isotopes.		
					[1]	
(f)	Iron	reacts with very di	lute nitric acid.			
			Fe + $2HNO_3 \longrightarrow$	$Fe(NO_3)_2 + H_2$		
	Writ	e a word equation	for this reaction.			
					[1]	
	[1]					
	[Total: 13]					

	name of ion	formula of ion	concentration of ion in g/dm ³	
	bromide	Br⁻	0.07	
	calcium	Ca ²⁺	0.4	
	chloride	C <i>l</i> ⁻	19.1	-
	magnesium	Mg ²⁺	1.2	_
	potassium	K⁺	0.3	_
	sodium	Na⁺	10.6	
		SO ₄ ²⁻	0.8	
	-	highest concentration in the formula SO_4^{2-} .	seawater?	[1]
	-		seawater?	[1]
tate th	e name of the ion wi			
state th	e name of the ion wi	th the formula SO_4^{2-} .		
State th Which t	e name of the ion wi wo ions in the table a eawater is evaporate	th the formula SO ₄ ²⁻ .	elements? compounds are formed	[1]
State th Which t	e name of the ion wi wo ions in the table a eawater is evaporate e name of the comp	th the formula SO ₄ ²⁻ . are formed from Group I and and and ed a number of different ound which is present ir	elements? compounds are formed	. [1]
State th Which t When s State th	e name of the ion wi wo ions in the table a eawater is evaporate e name of the compo ne names of two ions	th the formula SO ₄ ²⁻ .	elements? compounds are formed the greatest quantity.	[1] [1] [1]

The table shows the concentration of some ions present in seawater. 3

(f)	Wh	en concentrated seawater is electrolysed, chlorine is formed at one of the electrodes.	For Examiner's
	(i)	To which Period in the Periodic Table does chlorine belong?	Use
	(ii)	Draw the electronic structure of a chlorine molecule. Show only the outer electrons.	
		[2]	
(m)		nking water can be obtained by purifying accurator	
(9)		nking water can be obtained by purifying seawater. Dain why distillation rather than filtration is used to purify seawater for drinking.	
	•••••	[2]	
		[Total: 11]	

8

The	e diagram shows a water treatment works.	For
	aluminium sulphate added	Examiner's Use
wate	er in to homes sedimentation tank sedimentation tank sedimentation tank to homes sand filter	
(a)	State one use of water in industry. [1]	
	[']	
(b)	Explain how the sand filter helps purify the water.	
	[2]	
(c)	The aluminium ions in aluminium sulphate cause clay particles to clump together. Describe a test for aluminium ions.	
	test	
	result	
	[3]	
(d)	Why is chlorine added to the water?	
	[1]	

4

(e)) Chlorine is in Group VII of the Periodic Table. When chlorine reacts with a solution of potassium bromide, the solution turns a reddish – brown colour.					
	(i)	Write a word equation for this reaction.				
			[2]			
	(ii)	Explain why iodine does not react with a solution of potassium bromide.				
			[1]			
(f)	Wh	en chlorine reacts with sodium to form sodium chloride, energy is released.				
	(i)	State the name given to a reaction which releases energy.				
			[1]			
	(ii)	What type of bonding is present in sodium chloride?				
			[1]			
	(iii)	Explain what happens in terms of electron transfer when a sodium atom reacts a chlorine atom.	with			
			[2]			
		[Total:	14]			

5		Pure dry crystals of magnesium sulphate can be made by reacting excess magnesium powder with dilute sulphuric acid.				
	(a)		ring the reaction, bubbles of a colourless gas are given off. te the name of this gas.			
				[1]		
	(b)	(i)	Why is excess magnesium used?			
				[1]		
		(ii)	How is the excess magnesium removed from the reaction mixture?			
				[1]		
	(c)		scribe how you can obtain pure dry crystals of magnesium sulphate from a soluti nagnesium sulphate.	on		
		•••••		[2]		
	(d)	(i)	Describe one other reaction that makes magnesium sulphate.			
				[1]		
		(ii)	Write a word equation for the reaction you suggested in part (d)(i).			
				[1]		
		(iii)	Magnesium sulphate can be used as a medicine. Explain why the chemicals use in medicines need to be as pure as possible.	ed		
				[1]		

For

Examiner's Use

(e) A student repeats the experiment using excess sulphuric acid.
 She obtains 24 g of magnesium sulphate from 4.8 g of magnesium.
 How much magnesium sulphate can the student obtain from 1.2 g of magnesium?

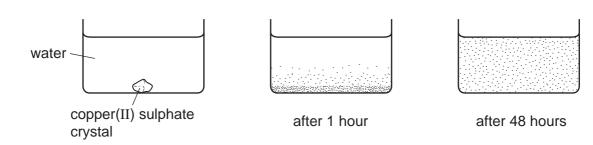
(f) A sample of 20 g of impure magnesium sulphate contains 19.5 g of magnesium sulphate.
 Calculate the percentage purity of the magnesium sulphate.

[1]

[1]

[Total: 10]

For Examiner's Use


6 Petroleum is separated into useful fractions by distillation	on.
--	-----

fractions fuel gas petrol paraffin diesel lubricating fraction petroleum bitumen (a) (i) What do you understand by the term fraction? [1] (ii) Which fraction has the lowest boiling point? [1] (iii) Describe how distillation is used to separate these fractions. [2] (iv) State a use for the paraffin fraction, the bitumen fraction. [2]

(b)	Ethene can be made by cracking certain hydrocarbon fractions.					For Examiner's	
	(i)	Explain what is m	eant by the term <i>c</i>	racking.			Use
						[1]	
	(ii)	Complete the equ	ation for the crack	ing of tetradecane,	C ₁₄ H ₃₀ .		
			C ₁₄ H ₃₀ →	+ C ₂ H ₄		[1]	
(c)		anol is formed whe alyst of phosphoric		ith ethene at high p	ressure and temperatur	e. A	
			ethene + ste	eam 럳 ethanol			
	(i)	What is the function	on of the catalyst?				
						[1]	
	(ii)	What is the mean	ing of the symbol 🗟	,⇒?			
						[1]	
	(iii)	What is this proce		rows in sugar solut r.	on.		
		addition c	ombustion	fermentation	neutralisation	[1]	
	(iv)	Phosphoric acid is phosphoric acid is		ate what you would	observe when a solutior	n of	
		blue litmus,					
		a solution of sodi	um carbonate			[2]	
					[Total:	13]	

7 A student placed a crystal of copper(II) sulphate in a beaker of water. After one hour the crystal had completely disappeared and a dense blue colour was observed in the water at the bottom of the beaker. After 48 hours the blue colour had spread throughout the water.

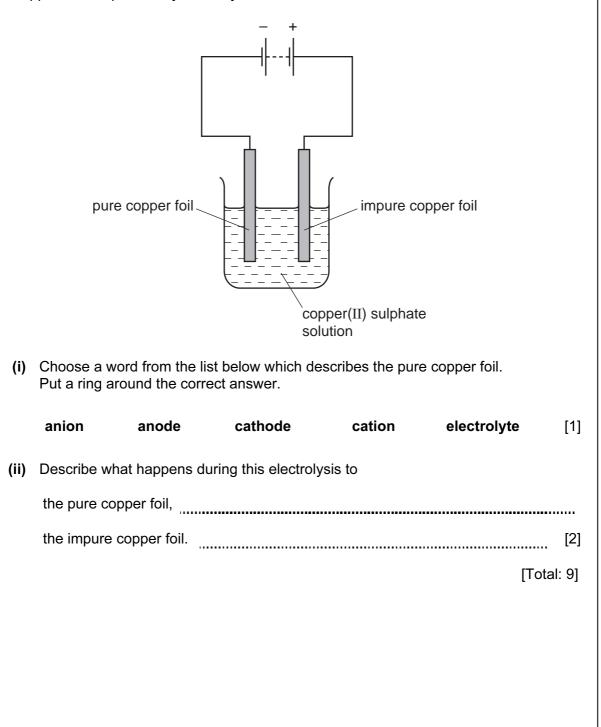
For Examiner's Use

(a) Use the kinetic particle theory to explain these observations.

[2]

(b) Describe the arrangement and motion of the particles in the copper(II) sulphate crystal.

arrangement ______[2]


(c) Copper ions can be separated from other metal ions by paper chromatography. Draw a labelled diagram of the apparatus for paper chromatography.

In your diagram include

- the solvent,
- the spot where the solution containing copper ions is placed.

For Examiner's Use

(d) Copper can be purified by electrolysis.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET The Periodic Table of the Elements

							-		
Group	0	4 Helium 2	20 Neon 10 A10 Argon	84 Krypton 36	131 Xe 54	Radon 86	-	175 Lu Lutetium 71	Lr Lawrencium 103
	١١		19 Fluorine 35.5 C1 17	80 Br Bromine 35	127 I Iodine 53	At Astatine 85		173 Yb Ytterbium 70	Nobelium 102
	N		16 Oxygen 32 Sulphur 16	79 Selenium 34	128 Te Tellurium 52	Polonium 84		169 Tm Thulium	Mendelevium 101
	>		14 Nitrogen 31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth		167 Er Erbium 68	Fermium 100
	2		12 6 28 28 28 14	73 Ge Germanium 32	119 Sn 50	207 Pb Lead 82		165 HOI Holmium 67	Einsteinium 99
	≡		11 B Beron 5 Att Attrinium	70 Ga 31	115 In Indium 49	204 T 1 Thallium 81		162 Dysprosium 66	Cf Californium 98
				65 Zn ^{2inc}	112 Cadmium 48	201 Hg ^{Mercury} 80	_	159 Tb ^{Terbium} 65	BK Berkelium 97
				64 Copper 29	108 Ag Silver 47	197 Au Gold 79		157 Gd Gadolinium 64	96 Curium
				59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78	_	152 Eu 63	Am Americium 95
				59 Co ²⁷	103 Rhodium 45	192 Ir Iridium	_	150 Sm Samarium 62	Putonium 94
		1 Hydrogen		56 F e Iron 26	101 RU Ruthenium 44	190 OS Osmium 76	_	Promethium 61	Neptunium 93
				55 Manganese 25	Tc Technetium 43	186 Re Rhenium 75		144 Neodymium 60	238 Uranium 92
				52 Ch romium 24	96 Mo Molybdenum 42	184 V Tungsten 74		141 Pr Praseodymium 59	Protactinium 91
				51 V Vanadium 23	93 Ni obium 41	181 Ta ^{Tantalum} 73		140 Cerium 58	232 Thorium 90
				48 Titanium 22	91 Zr Zirconium 40	178 Hf ^{Hafnium} 72			nic mass bol nic) number
				45 Scandium 21	89 Yttrium 39	139 La Lanthanum 57 *	227 Actinium 89	l series eries	a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		9 Beryllium 24 Magnesium	40 Calcium 20	88 St rontium 38	137 Baa Barium 56	226 Rad ium 88	*58-71 Lanthanoid series 190-103 Actinoid series	₽ × a
	-		7 3 23 23 23 23 11 Sodium	39 Potassium 19	85 R b Rubidium 37	133 CS Caesium 55	Fr Francium 87	*58-71 L †90-103	ه Key

The volume of one mole of any gas is 24 ${\rm dm}^3$ at room temperature and pressure (r.t.p.).

PMT

16